The Missing Step

Making Data-Oriented Design
One Million Times Faster

ANDREW DRAKEFORD

Meeting C++
2025

Leave One Out Regression

* One million elements, One million leave one out regressions:

Reference implementation

generating data set size 1000000

setting data

fitting data

1.46681e+07 milli seconds per fit

D:\online25\DR3\x6U4\ICC2023\LeaveOneOutRegression.exe (process 7950U4) exited with code 0.

Press any key to close this window . . .

New implementation

18.0961 milli seconds per fit
' D:\online25\DR3\x64\ICC2023\LeaveOneOutRegression.exe (process 58192) exited with code 0.

Press any key to close this window .

The Memory Wall.
Understand the data => understand the problem.

®—® Microprocessor performance
|- - Memory performance
104} |
o .
© 10°%}
4y [
= :
L -
g _
o 102}
o i
101}
1 00 1 1 1 1
1985 1990 1995 2000 2005 2010

Year

ROAD MAP

e Data Oriented Design - overview
* Polya Problem Solving

* Examples
* Matrix example
* Regression Example
* Implementation
* Design for accuracy

* Getting started with Polya

Data Oriented Design

DATA ORIENTED
DESIGN

Data-Oriented Design Principles:

* Programs just transform data from one form to another

* Understand t
* Understand t
* Understand t
* Code is data

ne problem by understanding the data
ne cost to understand the problem

ne hardware => understand cost

Data-Oriented Design Principles:

* CONTEXT the more you have the better you can make your solution
* Software is a real thing running on real hardware

* Reason must prevail (evidence)

* Don’t solve problems you don’t have.

Data-Oriented Design Book
Richard Fabian

* Also mentions the power of ordering

ATA-

* https://www.dataorienteddesign.com/dodbook/ R|ENTED
SIaN

* Revisiting Data-Oriented Design WEB PDF o s

Lucian Radu Teodorescu.
Overload, 30(167):4-8, February 2022.

R FABIAN

* Vittorio Romeo cppCon2025
https://www.youtube.com/watch?v=SzjJfKHygaQ

https://www.dataorienteddesign.com/dodbook/
https://www.dataorienteddesign.com/dodbook/
https://accu.org/journals/overload/30/167/teodorescu/
https://accu.org/journals/overload/30/167/overload167.pdf#page=6
https://www.youtube.com/watch?v=SzjJfKHygaQ

 DOD encourages us to focus on data layout and access so we don’t
hit the memory wall

* High Art is transforming critical inner loops to SIMD operations
applied to contiguous vectors of data.

THE REAL DESIGN PROBLEM

Real Life Problem/Solution Is Highly
Dimensional

* Decomposition and algorithm choices

* Compile time off-loading with constexpr
* Spatial layout

e Execution ordering

* Vectorization

e Caching and execution ordering

* Handling Randomness and look-ups

* WE MUST CONSIDER THESE FACTORS IN CONTEXT OF PROBLEM DOMAIN

Sub Problem Grouping

* Logical .. Algorithmic

* Physical spatiotemporal ordering, layout and sequencing

* Problem Domain
* |diosyncratic utility function
* |diosyncratic side information/ constraints
* |diosyncratic invariants or data patterns to exploit

The Missing Step

* The “missing step” in classic Data-oriented Design is a method for
working the design problem—a disciplined, heuristic-driven way to
move from “understand the problem” to a concrete, better
formulation.

* Considering the whole design problem is hard. It is highly
dimensional and extends beyond just code and hardware aspects.

 Domain-specific factors can dominate the design process to such a
degree that HFT and games developers’ concerns are wildly different.

UNDERSTAND THE

INDERSTAND THE PROBL
T E— |
_ LT A

: M =3

oAt I
1

I

B Rt T A
USRemelsa) TRE PYDRLEM

J -

DEVISE. A PLAN

7 F =R

A AP
= S 4
-
~

g COMPILE-TINE OF

wiliowiniztion

FLA

'f 7|
1\ Ta

Cercolalration

Vercodiion | |~

gl
Jememiivg |

Carcheilon | s

f -

| CARRIY OUT A PLA

93
o] 10| 8
3
K
0 |3

: o
! \ ";)\.‘:b_;"_:,:,‘.“?‘ l.' o
! 2 e "
l ' 7 nES \
| W
s 5 . r
e SN
. S
@ LoF
= Y

LAGIIGIAE THE P

s

’ . ‘7\"
-
L T e
e
Ly e

LAN

& f
¥
& "!5 }

A Little Help from George Polya

George Polya was a Hungarian-American mathematician.
He was a professor of mathematics from 1914 to 1940 at

ETH Zirich and from 1940 to 1953 at Stanford University.

He made fundamental contributions to combinatorics,
number theory, numerical analysis and probability theory.

He is also noted for his work

in heuristics and mathematics education.l2 He has
been described as one of The Martians,2! an
informal category which included one of his most
famous students at ETH Zurich, John von
Neumann.

https://en.wikipedia.org/wiki/Heuristics
https://en.wikipedia.org/wiki/Mathematics_education
https://en.wikipedia.org/wiki/George_P%C3%B3lya#cite_note-2
https://en.wikipedia.org/wiki/The_Martians_(scientists)
https://en.wikipedia.org/wiki/George_P%C3%B3lya#cite_note-3
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/John_von_Neumann

HOW TO SOLVE IT
A NEW ASPECT OF “Everyone should know the work

MATHEMATICAL METHOD

by G. POLYA of George Polya
on how to solve problems”

Marvin Minsky

https://www.hlevkin.com/hlevkin/90MathPhysBioBooks/Math/Polya/George_Polya_How_To_Solve_lt_.pdf

Polya In A NutShell

* George Pdlya’s method encourages you to:

1.Understand
2.Plan
3.Execute
4.Reflect

Understand The Problem

e What is the unknown? What are the data? What is the condition?

* |s it possible to satisfy the condition? Is it sufficient? Or redundant?
Or contradictory?

e Separate various parts of the condition. Can | write them down?

* Draw a picture.

Draw a Diagram

. g
————— e
=
= ¥
5 H
- R
—
» > S il et
—-*

1 — = 1 I .

'~ —3-
r————

Lrrzes e Forrver crrecd Bgecgpotereiead JSeeriirons .

A =5 B -2 C=20.

One of James Clerk Maxwell's examples for drawings of lines of force. From James Clerk Maxwell, A Treatise on
Electricity and Magnetism, vol. 1 (Oxford: Clarendon Press, 1873), Plates, fig. 4

Einstein

“ c:W’-‘ B
| et ‘1% m““?: w ar

P
: e 4
M‘*vn"ﬁ“m. i Lo LIRS, “*'**“‘f |

waeee,

Devise a Plan — Recognition

* Find the connection between the unknown and the data.
* Have you seen and solved the problem before?

* Do you know a related problem?

e Can you restate the problem differently?

* Look at the unknown. Do you know problems giving the same or
similar unknowns? Could the same solution approach be used?

* Possibly solve auxiliary problems if no immediate connection
between the unknown and the data

Devise a Plan -2 — Auxiliary Problems

* Try to solve a related or easier (auxiliary problem)

e Relax constraints, consider a more general or specific similar
problem?

* What happens if you change the data, the unknown? Does this bring
you closer to a solution?

* Did you use all the data? Using all the information in our problem
space might give us conditions to exploit.

* Have you taken into account all essential notions involved in the
problem?

Devise a Plan 3 — Heuristics

* Key Heuristic Strategies:

* Decomposition and Recombination
* Analogy

* Generalization and Specialization

* Working Backwards

* Auxiliary Elements (constructions, diagrams, notation,
Intermediate goals)

* Reduction: mapping the problem to a known problem

Heuristics/Decomposition?

* Break problems into smaller, independent sub-problems
* We all know this, so what’s the big deal?

Heuristics/Decompose and Recombine

* Problem: Optimal Data layout

Heuristics/Decompose and Recombine

N

Decompose and Recombine

State: Initial seorge Pélya - Accidental Founder

Field Types

B cosicion

Position

b

]

]

Position
Velocity X
velocity Y

Velocity 2

Mass

Heuristics/Analogy

* Problem: A simulation accesses data scattered across many small
objects.

Heuristics/Analogy

* Problem: A simulation accesses data scattered across many small
objects.

* Analogy:
Assembling a car engine in a workshop, but every bolt and screw is in
a different warehouse on the other side of town.

Heuristics/Analogy

* Problem: Poor Data Cohesion
A simulation accesses data scattered across many small objects

* Analogy:
Assembling a car engine in a workshop, but every bolt and screw is in

a different warehouse on the other side of town.

* What the analogy suggests: ->Use a Workbench
Bring what’s needed for the current task close together- organise

tools and parts by usage, not type

Heuristics/Analogy

* Problem: Poor Data Cohesion
A simulation accesses data scattered across many small objects

* Analogy:
Assembling a car engine in a workshop, but every bolt and screw is in

a different warehouse on the other side of town.

* What the analogy suggests: ->Use a Workbench
Bring what’s needed for the current task close together- organise

tools and parts by usage, not type

 Solution insight:
Group frequently-used data together in memory, and apply spatial
locality for access patterns

Heuristics/Generalisation

e “Can | solve a more general version of this problem first?”
Paradoxically, generalising often makes the problem simpler to think

about —
because you remove distracting details and see the structure more

clearly.

Heuristics/Generalisation

Problem:

You have a growing set of if/else conditions that decide pricing, validation, or
access control. Adding new cases keeps breaking old ones.

Generalisation:
Step back: you’re not dealing with pricing rules, but rather with applying
rules to inputs. Abstract it into a data-driven rules engine or table of

conditions.

Outcome:
The generalised model supports all current and future rules.
You didn’t patch the code — you elevated the problem from code to data.

Heuristics/Specialisation

* Pélya Heuristic: Specialisation

* “Can | make the problem easier by fixing some parameters or looking
at a special case?”

* This is often the key to insight — solving an easier case first gives you
a foothold.

Heuristics/Specialisation

* Problem:
A recursive parser crashes on large input.
The trace is unreadable.

 Specialisation:
Feed it a tiny example — maybe one line of input.
Watch the recursion by hand, or in a debugger, step by step.

* Outcome:
The small case exposes the logic flaw or incorrect base case.

The insight generalises back to the full version.

Heuristics/Working Backwards

Pélya Heuristic: Working Backwards:
“Start from the desired outcome and trace backwards the steps or
conditions that must be true to get there.”

It’s the same principle mathematicians use in proofs, and engineers use
in reverse-engineering or backpropagation.

Heuristics/Working Backwards — performance

 Start from the data that must be hot for performance.
Ask: “What must have happened earlier to make that true?”

Then structure your cache key or data layout around that pattern of
access.

This reverse reasoning — from hot data back to the producer —
often exposes reuse or reordering opportunities.

* Example:

You discover the final computation reuses intermediate values.
so you work backwards to restructure data flow to preserve them.

3 Carry Out The Plan

* Work through the tasks in the plan. Checking/testing the results of
intermediate findings.

* Prototyping, measuring performance , checking that the faster code
generates the correct results.

4 Reflection

* Check the results

* Could | get to the same results via a different route?
e Can | see the answer/ solution at a glance?

* Can this effort/result solve other problems?

Diagnosis — Main Reasons For Failure

* Incomplete understanding of the problem: Lack of concentration on
understanding the problem in the initial phase.

* Planning Failure: Two opposite faults
e Rushing in without a plan or general idea
* Waiting for an idea to come.

e Execution Failure: Carelessness

Essential Elements for Success

Positive Mindset: curiosity, persistence and a growth mindset.
Notes: Keep notes on thoughts, attempts, and processes.

Develop discovery through thoughtful questions: Socratic
Questioning?

Socratic Questions on DOD

Type

Clarification

Probing
Assumptions

Probing Evidence

Alternative Views

Implications

Questioning the
Question

Purpose

Define key concepts

Challenge beliefs

Check reasoning

Consider other
perspectives

Explore consequences

Reflect on our inquiry

Example

"What do we mean by
‘cache efficiency'?"

"Why do we assume
OOP is the best
approach?"

"What benchmarks
prove this design is
faster?"

"What would an OOP
advocate say about
DOD?"

"How will DOD affect
maintainability?"

"Are we focusing on
the right problem?"

Polya Structure + Heuristics

* Polya: Structured problem solving =>the how to

* Process: Understand =>plan => execute=>reflect

* Heuristics: (Activities) to work on the problem: e.g. decomposition
 Diagnostics: common failure modes

* Signs of progress: simplifications, invariant constraints, beneficial
results on the way to solving. Whole condition.

* Your takeaway: more places to attack performance and concrete
tools/checklists to do it

EXAMPLES

PROBLEM-SOLVING
A A DESIGN &

POLYA'S FOUR
STEPS

1. Understand the problem
2. Devise a plan

3. Carry out the plan

4. Look back

| N Ly
roblem —> - N/

7

-»Test» Generac Ge”efal'ée

Example

* A troublesome function in a moment matching pricing algorithm:

* Sum over all elements of a square matrix, where the axis has sets of
equal values and monotonic increasing time indices

S =Niz1 2y=1 F&, Ty, T))

Initial Code

for (int 1 = 1; 1 <= N; ++1)
{
for (int j = 1; j <= N; ++j)
{
double v = f_impl(t, i, j);
acc += v;

Example

* A troublesome function in a moment matching pricing algorithm:

* Sum over all elements of a square matrix, where the axis has sets of
equal values and monotonic increasing time indices

S = Zévzl Zyzl F(tJ Ti; T_'])

However inside of expensive function F, F_Impl just takes a single
argument, of value min(t, T;, T;)

inline double f_impl _math(int m)
{
//the expensive function
return std::exp(std::sin(static_cast<double>(m)));

}

// f(t,1,3) = exp(sin(min(t,1i,3))) ;
inline double f _impl(int t, int i, int j)
{
int m = std::min(t, std::min(i, 3J));
return f_impl math(m);

What we calculate

S = Z?’:l 27:1 Fimpl (min(t' Iy, TJ))

Plan

e Simplify, create an auxiliary problem and investigate

* Draw a picture

Simplity => auxiliary problem

* Drop the first argument t:

S = IiV=1 Zyzl Fimpl(min(t' Tl" T]))
=>

S = Il_V=1 Zﬂy=1 Fimpl(min(Ti' TJ))

Simplity => auxiliary problem

* Drop the first argument t:

S = IiV=1 Zﬂy:1 Fimpl(min(Ti' T]))

Simplity => auxiliary problem

* Drop the first argument t:
S= Xit1 Xj1 Fimp(min(T;, 7))

* Change date T;, T; to integers
S=Xiz1 Xj=1 Fimp (min(i,)

Simplity => auxiliary problem

* Drop the first argument t:
S= Xit1 Xj1 Fimp(min(T;, 7))

* Change date T;, T; to integers
S=Xiz1 Xj=1 Fimp (min(i,)

* Simplify Fipp;:

Fimpi(x) { return x;}

Simplity => auxiliary problem

* Drop the first argument t:
S = §V=1 29;1 Fimpl(min(Ti: T]))

* Change date T}, T; to integers
S=YiL1 Xj=1 Fimpt (min(i,)

* Simplity Fipp:
Fimpi(x) { return x;}

Plot the matrix

Draw Example Matrix (7 x7)

set values for min(i,j)

min(i,j): Highlight the pattern

min(i,j): Highlight the pattern

We get N distinct equivalent regions

Size of region S; = 2(N —i)+1

Reduces to a single summation
O(N?) -> O(N)

N
S=ZF(Ti)* (2(N = i) + 1)

* Walk along the diagonal elements call the function and multiply by
scale factor (number of elements) and add to running sum

Auxiliary collapsed version

double acc = 6.8,

for (int 1 = 1; 1 <= N; ++1i)

{
int w = 2*¥(N - 1) + 1; // multiplicity for level
double v = f_impl math(i);
acc += static_cast<double>(w) * v;

Adding the extra variable t, to the min
condition

Three variants

't<T1
't>TN
.Tl <t <TN

min(t,i,j) where t<T;y EG t< 1.0

S=F(t)*N?

min(t,i,j) wheret>Ty EGt > 7.0

RS
1 1 1 1 1 1 1 1

S = F(Ti) « 2Q(N—-1i)+ 1)
2

1 2 2 2 2 2 2
1 2 3 3 3 3 3
1 2 3 4 4 4 4
1 2 3 4 5 5 5
1 2 3 4 5 6 6

min(t,i,j) where Tq <t <Ty

F(T) * Q(N —1i) + 1)

K
=1

+F(t) * (N — K)?

Result

 Our new approach gives us between 1 and N calls to the expensive
function, as opposed to N?

e Strategic win, particularly when we move to assets which have matrix
elements on an hourly basis instead of monthly

Collapsed with special case added

// Collapsed O(N) sum for S = sum_{i=1..N} sum {j=1..N} exp(sin{min(t,i,3)))
// Works for all t > @ (integer or non-integer), indices 1..N.
static double sum_collapsed all t(int N, double t) {
const bool t_is int = std::fabs(t - std::round(t)) <= 1e-12 * (std::fabs(t) + 1.8);
const int L = static cast<int>(std::floor(t));
const int U = static_cast<int>(std::ceil(t));
double acc = ©.0;

if (t »>= N) {
for (int k = 1; k <= N; ++k)
acc += (2.8 * (N - k) + 1.8) * F(static_cast<double>(k));
I else {
int up to = t is int ? (L - 1) : L;
if (up_to » N) up_to = N;
for (int k = 1; k <= up_to; ++k)
acc += (2.8 * (N - k) + 1.8) * F(static_cast<double>(k));
long long side = t is int ? (static_cast<long long>(N) - L + 1LL)
: (static _cast<long long>(N) - U + 1LL);
if (side > 8) acc += static_cast<double>(side * side) * F(t);
}
return acc;

Try It Yourself

 Godbolt here :
https://godbolt.org/z/5dgx1Ysd7

https://godbolt.org/z/5dqx1Ysd7

Speed up as factor variation of t

L ==

N=40 reps=1000 (times in milliseconds)
t small (t=4.250000) :

collapsed: 0.000 ms naive: 0.037 ms speedup: 263.036x
t medium (t=24.370000):
collapsed: 0.001 ms naive: 0.037 ms speedup: ©1.855x

t large (t=40.420000):
collapsed: 0.001 ms naive: 0.038 ms speedup: 39.52:2Zx

* That’s our first example from real world experience

* A tricky performance problem solved by the insight generated from a
simplifed auxillary problem and drawing a picture

* | do have other examples

* Now for the million times faster example

Example Leave One Out Regression

Example Leave One Out Regression

* Machine Learning
* Trying to find predictive factors for simple linear relationships.

* Assessing feature vector/model quality.

* For each data point we forecast the value at that point using a model
built from the whole data set minus that point. The difference
between forecast and observed gives the error at each point.

* A final step of estimating quantiles or inter-quantile range as a metric
for the quality of the fit, and suitability of the relationship as a

predictor.

Example loo residuals

Distribution of Leave-One-Out (LOQO) Errors with Quartiles (lllustration)

200

150

Count

100

50

75 5.0

-2.5 0.0
LOOQ residual (r_i)

25 5.0 75 10.0

Q1 = -0.73, Median = -0.08, Q3 = 0.58, IQR = 1.31

The Application

* Use simple linear low (single dimension)
* Generally, will be an O(N?)

* For each (N) data points
e Fit (N -1) data points and compute residual

Regularised Linear Regression

* Makes more stable by adding a penalty for larger slopes

Understanding The problem

e Questions about data/ size
* Performance requirements
* Accuracy requirements
* Have | solved it before?

* Known solutions, call least squares fit many times with permuted
leave one out data

Understanding the problem

 What is the algorithm used

* Why is it so expensive / slow

Model and Objective function

-

Model Yy; — Po+ Brxi, 12— 1,...

- - 2 ‘)
- - - i L '/ 5 i A ',f &
Ridge Objective s E 1 yi — (Bo + Brzi)|” + AB;

e A:regularization parameter
e [By: intercept (not penalized)

e [3;:slope (penalized)

The Design Matrix

1 z Y

1 x Yo g
X = 1 31 , Y = Y3 B — [d?]

1 x4 Y4

1 x5 | Ys_

We include an intercept by adding a column of 1's:

Regularisation

We penalize only 3. Hence, our penalty matrix is:

— —

0
0 A

1\ —

Interpretation:
e Top-leftentry =0 — do not penalize (3.

e Bottom-right entry = A — penalize 3, with strength A.

The Normal Equations

The Normal Equation for ridge with intercept (unpenalized) is:

(X' X+A)B=X"y

B=(X'X+A) X'y

The Essence of the Regression Calculation

N a1l [N S
),z Y zf e

0 0
A-[0Y

; [N S o 0] [N s
X' X +A S, S.: 0 X Sr Sz + A

Explicit 5, and 3,

(Szz + A) Sy — 5z 52y
N (S:z::c + A) o (S-’L‘)2

Bo

NSy — Sz Sy
N(Szz + A) — (5=z)*

5

Approach

Understand the problem
 |dentify slow /expensive parts

Planning

Explore auxiliary problems that reflect the slow parts

* Draw some pictures

Generalise solutions to auxiliary problems

Construct a new algorithm

The slow bit (repeated N times)

X

X_

"N ZLz

P EBW

* But we are repeating this N times with slightly
different data sets

* [t’s the first X"X term that introduces the O(N)
dependence into the fitting

* Also, the last term in X'Y

The slow bit (repeated N times)

X X =

N

DIETEDIE H

R

2 Ti

How are we going to make this go faster?

The slow bit (repeated N times)

-y - -

" N ¥
X X -Z :L.i v J;?_ .Sv_r '-q.l'.l‘

y A

How are we going to make this go faster?

Un-sequenced reduction and transform reduce!
Scale with threads and SIMD (if we are lucky)

If only this was dereferencing a nullptr!

STOP

If only this was dereferencing a nullptr!

* We have applied an answer we know, to a problem we recognise.

* We have not fully considered the context. We have only considered
what we might do on an existing inner loop.

* Huge restrictions in the scope of solutions we might consider

Expand scope

* Consider speeding up the whole set of X'X not just each perturbed
version.

Consider a simpler auxiliary problem

N Y x; | N S,

X X -) —_ Y Y

How does this single element compute, vary over all
the different leave-one-out summations we will do?

Consider a simpler auxiliary problem

* One of the summations in the X'X matrix, for all the leave-one-out
perturbations

* Pick leave one out sum of X,

* Draw a picture, or work an example by hand.

Summation rows leaving out an element

1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1

2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2

3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3

3.3

4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4

4.4
4.4

Lots of repetition

5.5
5.5
5.5
5.5
5.5
5.5
5.5

5.5
5.5
5.5

6.6
6.6
6.6
6.6
6.6
6.6

6.6
6.6
6.6
6.6

7.7
7.7
7.7
7.7
7.7

7.7
7.7
7.7
7.7
7.7

8.8
8.8
8.8
8.8

8.8
8.8
8.8
8.8
8.8
8.8

9.9
9.9
9.9

9.9
9.9
9.9
9.9
9.9
9.9
9.9

10.1
10.1

10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1

11.11

11.11
11.11
11.11
11.11
11.11
11.11
11.11
11.11
11.11

12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12

Signs of progress

* We are looking at the problem differently. We have broadened the
context

* We understand the problem better.

* A huge amount of repetition, we must surely be able to find a way to
exploit this.

Summation rows leaving out an element

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12

Can we reuse the sum for the first
row to calculate the second row ?

Summation rows leaving out an element

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12

Can we re-use the sum for the first
row to calculate the second row ?

Sum_loo_ 1=Sum loo O0+x 0—-x_1
Sum_loo 2=Sum loo 0+x 0—x_2

Lots of repetition

Summation rows leaving out an element

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12

But Sum _loo 0+ x_0 is just the sum of all the elements
So each leave one out sum(i) = Sum_all — x_i

So, compute the sum over the whole row:
Then compute leave-one-out sums by subtracting the left-out element

Generalisation ?

* Does this generalise to all our leave one out sums ?

Summation rows leaving out an element

1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1
1.1

2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2

3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3

3.3

4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4

4.4
4.4

Lots of repetition

5.5
5.5
5.5
5.5
5.5
5.5
5.5

5.5
5.5
5.5

6.6
6.6
6.6
6.6
6.6
6.6

6.6
6.6
6.6
6.6

7.7
7.7
7.7
7.7
7.7

7.7
7.7
7.7
7.7
7.7

8.8
8.8
8.8
8.8

8.8
8.8
8.8
8.8
8.8
8.8

9.9
9.9
9.9

9.9
9.9
9.9
9.9
9.9
9.9
9.9

10.1
10.1

10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1

11.11

11.11
11.11
11.11
11.11
11.11
11.11
11.11
11.11
11.11

12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12
12.12

12.12 -12.12 10.1 11.11

11.11 -11.11 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12
10.1 -10.1 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 1111 12.12
9.9 -9.9 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 10.1 11.11 12.12
8.8 -8.8 1.1 2.2 3.3 4.4 5.5 6.6 7.7 9.9 10.1 11.11 12.12
7.7 -7.7 1.1 2.2 3.3 4.4 5.5 6.6 8.8 9.9 10.1 11,11 12.12
6.6 -6.6 1.1 2.2 3.3 4.4 5.5 7.7 8.8 9.9 10.1 11.11 12.12
5.5 -5.5 1.1 2.2 3.3 4.4 6.6 7.7 8.8 9.9 10.1 11.11 12.12
4.4 -4.4 1.1 2.2 3.3 5.5 6.6 7.7 8.8 9.9 10.1 1111 12.12
3.3 -3.3 1.1 2.2 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12
2.2 -2.2 1.1 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12

Add two columns containing + and - the omitted values: these don’t change the horizontal sum

Summation rows leaving out an element

12.12 10.1 11.11 -12.12
11.11 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12 -11.11
10.1 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.11 12.12 -10.1
9.9 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 10.1 11.11 12.12 -9.9
8.8 1.1 2.2 3.3 4.4 5.5 6.6 7.7 9.9 10.1 11.11 12.12 -8.8
7.7 1.1 2.2 3.3 4.4 5.5 6.6 8.8 9.9 10.1 11.11 12.12 -7.7
6.6 1.1 2.2 3.3 4.4 5.5 7.7 8.8 9.9 10.1 1111 12.12 -6.6
5.5 1.1 2.2 3.3 4.4 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -5.5
4.4 1.1 2.2 3.3 5.5 6.6 7.7 8.8 9.9 10.1 1111 12.12 -4.4
3.3 1.1 2.2 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -3.3
2.2 1.1 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -2.2

Move negative column to right hand side

Summation rows leaving out an element

12.12 10.1 11.11 -12.12
11.11 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 12.12 -11.11
10.1 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.11 12.12 -10.1
9.9 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 10.1 11.11 12.12 -9.9
8.8 1.1 2.2 3.3 4.4 5.5 6.6 7.7 9.9 10.1 11.11 12.12 -8.8
7.7 1.1 2.2 3.3 4.4 5.5 6.6 8.8 9.9 10.1 11.11 12.12 -7.7
6.6 1.1 2.2 3.3 4.4 5.5 7.7 8.8 9.9 10.1 1111 12.12 -6.6
5.5 1.1 2.2 3.3 4.4 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -5.5
4.4 1.1 2.2 3.3 5.5 6.6 7.7 8.8 9.9 10.1 1111 12.12 -4.4
3.3 1.1 2.2 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -3.3
2.2 1.1 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -2.2

Use LHS column values to fill leave one out spaces

Summation rows leaving out an element

0 10.1 11.11 12.12 -12.12
0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -11.11
0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -10.1
0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -9.9

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -8.8

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -7.7

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 1111 12.12 -6.6

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -5.5

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -4.4

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -3.3

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -2.2

Use LHS column values to fill leave one out spaces

Summation across all rows in
matrix and write sum in LH
column

82.83 10.1 11.11 12.12 -12.12
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -11.11
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -10.1
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -9.9
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -8.8
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -7.7
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 1111 12.12 -6.6
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -5.5
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -4.4
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11,11 12.12 -3.3
82.83 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.1 11.11 12.12 -2.2

Use LHS column values to fill leave one out spaces

Summation across all rows in matrix and
write sum in LH column

82.83
82.83
82.83
82.83
82.83
82.83
82.83
82.83
82.83
82.83
82.83

00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 >

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Use LHS contains sum over all elements

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

12.12

-11.11
-10.1
-9.9
-8.8
7.7
-6.6
5.5
4.4
33
2.2

Summation across all rows in matrix and
write sum in LH column

82.83 -12.12
82.83 -11.11
82.83 -10.1
82.83 -9.9
82.83 -8.8
82.83 -7.7
82.83 -6.6
82.83 -5.5
82.83 -4.4
82.83 -3.3
82.83 -2.2

Use LHS contains sum over all elements
RH column contains left out values

What are the costs for this solution?

* First sum over whole row to get Sn cost N
* Then create each leave one out sum Sk SN—xi costN
operations

* We can compute all our leave one out sums in 2 N operations

The New Algorithm : Summations over set

* For all leave one out sums, sum over the complete set S
* Snix)

* S\(1)

« Sy(x?)

* Sy(xy)

* Sy(y)

* Generate Leave one out at index i, by subtracting f(x,) vector from the sum

* For each set of Loo sums
* Nopsto reduce
* N ops to create Loo sums

* 2N operations

Leave one out vector sums

For all leave-one-out sums, sum over the complete set S,

Leave one out Sx_i = Sy(x) — x_i vector of (x_i*-1)+ Sx_i

Leave one out Sn_i =S,(1) =N-1

Leave one out Sxx_i = Sy(x%) — (x_i *x_i) element-wise multiply x_i * x_i
Leave one out Sxy_i =Sy(xy) —(x_i *y_i) element-wise multiply x_iy i

Leave one out S, ; =Sy(y)—y_i vector of (y_i*-1)+ Sy i

New Algorithm

* Generate the new fits using the closed-form expressions for Betas
* 1) Generate sums over the whole data set Sx, Sxx, Sy, Sxy

e 2) Generate leave one out sums by subtracting vectors of x, xx, y, xy
from corresponding sum

 3) Evaluate the form solution using vector operations

Explicit 5y and [,

After computing the inverse, we get:

 (Ser+A) S, — 5. S, NSz — S. S,

By B

N(Sez +2) = (S2)2 7 71 N(Sax +A) — (S2)2

Note the denominators are the same !

Reflection

Reflection

* This was an important illustration of the benefit of not just trying to
optimise the inner loop.

* The benefits of expanding context
* Looking at a simpler, auxiliary sub-problem

* We might also look at calculating an example by hand

Generalisation Reflection

* We can generalise our Trick.

* If we are using reduction to calculate N values on perturbations of a set of
data of size N. And there is an inverse operation to the reduction operation

* Generate O(N) perturbed sets

e Generate Reduction value for each O(N)
e -> 0O(N?)

* Generate reduction on whole set O(N)

* Apply inverse operation on whole set result for each permutation O(1)
e -> 0O(N)

\

GENE H,. GOLUB - CHARLES F, VAN LOA,

MATRI X .
.(;.OMPUTATIONS Reﬂect|0n

{_ TUIRD EDITION |

* Had we studied some post-grad course in
computational matrix methods

* We might have seen it as some matrix update
problem

Technical

Hardware Memory and Vectorisation

e Use DR3

e Contiguous memory layout
 Memory pool so efficient memory allocation

* Vectorised math operations

VecXX Utility

Memory pool Vec<SIMD_TYPE>

— aligned

Math Operators and Functions

vec_A=vec B+vec C

vec_A>=vec B
data

vec_A =sin(vec_C)

Epad

VecXX

* Memory managed vector type

e Supports math functions and operations

e Contiguous, aligned and padded

e Can change the scalar type and instruction set

 Substitutable for scalar type so we drop into existing code to make it
vectorised

Create a vectorized version using DR3

* Code available on https://github.com/andyD123/DR3

* Implementation using vectorised library.

* Using contiguous memory layout and vectorised instructions

 We can transform scalar code into vector code.

* Using auto to avoid explicitly indicating vector or scalar typing.

https://github.com/andyD123/DR3

Explicit 5y and [,

After computing the inverse, we get:

_ (Bt NS =88y o NSy =SS,

TN) (52 N(Sez +2) = (52

Note the denominators are the same !

auto MULT = [](auto x, auto y) { return x * y; };
auto SUM = [](auto x, auto y) { return x + y; };

auto SQR = [](auto x) {return x * x; };
auto S_x = reduce(data_X, SUM);
auto S_y = reduce(data_yY, SUM);

auto S_xx = transformReduce(data_X, SQR, SUM);
auto S_xy = transformReduce(data_X, data_Y, MULT, SUM);

auto SX_loo
auto SY_loo

S_x - data_X;
S_y - data.Y;

auto data_X_squared = data_X * data_X;
auto SXX_loo = S_xx - data_X_squared;

(Sac + A) Sy — 52 92y
NGez +) = (5.2

auto data_X Y = data_X * data_Y; ﬁgn _
auto SXY_loo = S_xy - data_X_Y;

double lambda = ©.9;
double Sz = data_X.size() - 1.0;
auto denominator = (Sz * (SXX_loo + lambda)) - (SX_loo * SX_loo);

auto Beta_@ numerator = (SXX_loo + lambda) * SY_loo - SX_loo * SXY_loo;
auto Beta_@ = Beta_© numerator / denominator;

auto Beta_1 numerator = Sz * SXY_loo - (SX_loo * SY_loo);
auto Beta_1 = Beta_1 numerator / denominator;

Leave One Out Regression- Performance Run

1 million elements LOO

18.0961 milli seconds per fit

' D:\online25\DR3\x64\ICC2023\LeaveOneOutRegression.exe (process 58192) exited with code 0.
Press any key to close this window .

generating data set size 1000000

setting data

fitting data

1.46681e+07 milli seconds per fit

D:\online25\DR3\x64\ICC2023\LeaveOneOutRegression.exe (process 79504) exited with code 0.
Press any key to close this window . . .

How can we make these summations more
accurate?

Heuristics Mini: Work-Backwards

* How do we make the floating point addition more accurate?

Heuristics Mini: Work-Backwards

* How do we make the floating point addition more accurate?

* Most accurate when combining similar-magnitude partial sums

Heuristics Mini: Work-Backwards

* How do we make the sums of floating point more accurate?
* Most accurate when combining similar-magnitude partial sums

* Recurse halves -> quarters-> pairs => pairwise (balanced) summation

Pairwise Summation

i[0] + i[1] +i[2] +i[3] +i[4] + i[5]+ .. i[63] i[64] +i[65] +i[66] +i[67] + ... i[127]

e -+ (R
((M+)+(+))+ ((+)+(M"'))

Lets Experiment

e 10 Billion 0.0-1.0 numbers added up using
* Forloop

e Std::accumulate

e Std::reduce

e Pairwise reduce
* Kahan summation

* What happens if we permute the input data

Results

Sums of the same set of numbers using Kahan and
pairwise

5246293712.841146 for loop sum
5246293712.841146 std: :accumulate sum
5246293712.841146 std: :reduce

5246293712.886652 sum pairwise
5246293712 .886652 sum Kahan acc

The other methods all agree
They say the sum is
5246293712.886652

Results

Sums of the same set of numbers using Kahan and
pairwise

52U6293712.841456 5246293712.841735 5246293712.841146 for loop sum
52U6293712.841U456 52U46293712.841735 52U46293712.841146 std: :accumulate sum
52U6293712.8U41U456 5246293712.841735 52U6293712.8411U46 std: :reduce

5246293712.886652 52U46293712.886652 52U46293712.886652 sum pairwise
52U46293712.886652 5246293712.886652 52U46293712.886652 sum Kahan acc

The other methods all agree
They say the sum is
5246293712.886652

Results

Sums of the same set of numbers using Kahan and
pairwise

520U6293712.8U0066 52U46293712.841456 5246293712.841735 52U46293712.841146 for loop sum
52U6293712.8U0066 52U46293712.841456 5246293712.841735 5246293712.841146 std: :accumulate sum
520U6293712.8U0066 5246293712.841456 5246293712.841735 5246293712.841146 std: :reduce

5206293712 .886653 52U46293712.886652 5246293712.886652 52U46293712.886652 sum pairwise
52U6293712.886652 52U46293712.886652 52U46293712.886652 52U46293712.886652 sum Kahan acc

The other methods all agree
They say the sum is
5246293712.886652

auto MULT = [](auto x, auto y) { return x * y; };
auto SUM = [](auto x, auto y) { return x + y; };

auto SQR = [](auto x) {return x * x; };
auto S_x = reduce(data_X, SUM);
auto S_y = reduce(data_yY, SUM);

auto S_xx = transformReduce(data_X, SQR, SUM);
auto S_xy = transformReduce(data_X, data_Y, MULT, SUM);

auto SX_loo
auto SY_loo

S_x - data_X;
S_y - data.Y;

auto data_X_squared = data_X * data_X;
auto SXX_loo = S_xx - data_X_squared;

(Sac + A) Sy — 52 92y
NGez +) = (5.2

auto data_X Y = data_X * data_Y; ﬁgn _
auto SXY_loo = S_xy - data_X_Y;

double lambda = ©.9;
double Sz = data_X.size() - 1.0;
auto denominator = (Sz * (SXX_loo + lambda)) - (SX_loo * SX_loo);

auto Beta_@ numerator = (SXX_loo + lambda) * SY_loo - SX_loo * SXY_loo;
auto Beta_@ = Beta_© numerator / denominator;

auto Beta_1 numerator = Sz * SXY_loo - (SX_loo * SY_loo);
auto Beta_1 = Beta_1 numerator / denominator;

auto
auto
auto

auto
auto
auto
auto

auto
auto
auto
auto
auto
auto

MULT = [](auto a, auto b) { return a * b; };
SUM = [](auto a, auto b) { return a + b; };
SQR = [](auto a) { return a * a; };

S x = pairwise_reduce(x, SUM);
S y = pairwise reduce(y, SUM);
S XX pairwise_ transformReduce(x, SQR, SUM);

S xy pairwise_ transformReduce(x, y, MULT, SUM);

SX loo = S x - x;

SY loo =Sy -vy;

data_X_squared = x * x;

SXX _loo = S xx - data X squared;
data X .Y = x * y;

SXY _loo = S xy - data X Y;

double Sz = x.size() - 1.0;

auto

auto
auto

auto
auto

auto
auto

SXX_loo plus_lambda = SXX loo + lambda;

denominator = (Sz * SXX loo plus lambda) - (SX loo * SX loo);
inv_denominator = 1.0 / denominator;

Beta_© numerator = SXX_loo plus_lambda * SY_loo - SX loo * SXY_loo;
Beta © = Beta_© numerator * inv_denominator;

Beta_1 numerator = Sz * SXY_loo - (SX loo * SY loo);
Beta 1 = Beta_1 numerator * inv_denominator;

Take Aways

Design addresses a highly dimensional problem.
* Logical algorithm design
* Physical optimising spatiotemporal memory use patterns
 Idiosyncratic aspects of the actual problem itself.

Working through the problem space in a structured way by using approaches
such as Polya’s can help

Always look to expand the context of your thinking around problem areas. This
can be very useful in keeping brilliant solutions in play.

* Drawing pictures and solving easier ancillary problems is unlikely to be wasted
time

If you cannot solve the proposed problem

* Try to solve first some related problem ...

* Human superiority lies in ...going around the obstacle that
cannot be overcome directly, in devising some suitable
auxiliary problem when the original one appears insoluble.

* Example of a Polya conducting a problem-solving session wit
students https://www.youtube.com/watch?v=hOgbw-Ur do

https://www.youtube.com/watch?v=h0gbw-Ur_do
https://www.youtube.com/watch?v=h0gbw-Ur_do
https://www.youtube.com/watch?v=h0gbw-Ur_do

Next Step Getting Started

* Get a copy of “How to Solve It book”
Read the foreword by Professor lan Stewart

Read the section “Practical Problems”
* “The Algorithm Design Manual”

* Notes on heuristics https://github.com/andyD123/cppCon25
* code available on https://github.com/andyD123/DR3
e contact e mail - andreedrakeford@hotmail.com

https://github.com/andyD123/DR3

	Slide 1
	Slide 2: Leave One Out Regression
	Slide 3: The Memory Wall. Understand the data => understand the problem.
	Slide 4: ROAD MAP
	Slide 5: Data Oriented Design
	Slide 6
	Slide 7: Data-Oriented Design Principles:
	Slide 8: Data-Oriented Design Book Richard Fabian
	Slide 9
	Slide 10: THE REAL DESIGN PROBLEM
	Slide 11: Real Life Problem/Solution Is Highly Dimensional
	Slide 12: Sub Problem Grouping
	Slide 13: The Missing Step
	Slide 14
	Slide 15
	Slide 16: Better Performance Through Structured Problem Solving:
	Slide 17: A Little Help from George Polya
	Slide 18
	Slide 19: Polya In A NutShell
	Slide 20: Understand The Problem
	Slide 21: Draw a Diagram
	Slide 22: Newton Einstein
	Slide 23: Devise a Plan – Recognition
	Slide 24: Devise a Plan -2 – Auxiliary Problems
	Slide 25: Devise a Plan 3 – Heuristics
	Slide 26: Heuristics/Decomposition?
	Slide 27: Heuristics/Decompose and Recombine
	Slide 28: Heuristics/Decompose and Recombine
	Slide 29
	Slide 30: Heuristics/Analogy
	Slide 31: Heuristics/Analogy
	Slide 32: Heuristics/Analogy
	Slide 33: Heuristics/Analogy
	Slide 34
	Slide 35: Heuristics/Generalisation
	Slide 36: Heuristics/Generalisation
	Slide 37: Heuristics/Specialisation
	Slide 38: Heuristics/Specialisation
	Slide 39: Heuristics/Working Backwards
	Slide 40: Heuristics/Working Backwards – performance
	Slide 41
	Slide 42: 3 Carry Out The Plan
	Slide 43: 4 Reflection
	Slide 44: Diagnosis – Main Reasons For Failure
	Slide 45: Essential Elements for Success
	Slide 46: Socratic Questions on DOD
	Slide 47: Polya Structure + Heuristics
	Slide 48: EXAMPLES
	Slide 49
	Slide 50: Example
	Slide 51: Initial Code
	Slide 52: Example
	Slide 53
	Slide 54: What we calculate
	Slide 55: Plan
	Slide 56: Simplify => auxiliary problem
	Slide 57: Simplify => auxiliary problem
	Slide 58: Simplify => auxiliary problem
	Slide 59: Simplify => auxiliary problem
	Slide 60: Simplify => auxiliary problem
	Slide 61: Draw Example Matrix (7 x7)
	Slide 62: set values for min(i,j)
	Slide 63: min(i,j): Highlight the pattern
	Slide 64: min(i,j): Highlight the pattern
	Slide 65: Reduces to a single summation O(cap N squared) -> O(cap N)
	Slide 66: Auxiliary collapsed version
	Slide 67: Adding the extra variable t, to the min condition
	Slide 68: min(t,i,j) where t < bold italic cap T sub bold 1 , , , , bold italic cap E bold italic cap G , , , bold italic t less than bold 1 . bold 0
	Slide 69: min(t,i,j) where t > bold italic cap T sub bold italic cap N , , , , cap E cap G , t greater than 7.0
	Slide 70: min(t,i,j) where bold italic cap T sub bold 1 < t < bold italic cap T sub bold italic cap N
	Slide 71: Result
	Slide 72: Collapsed with special case added
	Slide 73: Try It Yourself
	Slide 74: Speed up as factor variation of t
	Slide 75
	Slide 76: Example Leave One Out Regression
	Slide 77: Example Leave One Out Regression
	Slide 78: Example loo residuals
	Slide 79: The Application
	Slide 80: Regularised Linear Regression
	Slide 81: Understanding The problem
	Slide 82: Understanding the problem
	Slide 83: Model and Objective function
	Slide 84: The Design Matrix
	Slide 85: Regularisation
	Slide 86: The Normal Equations
	Slide 87: The Essence of the Regression Calculation
	Slide 88
	Slide 89: Approach
	Slide 90: The slow bit (repeated N times)
	Slide 91
	Slide 92: The slow bit (repeated N times)
	Slide 93: The slow bit (repeated N times)
	Slide 94: If only this was dereferencing a nullptr!
	Slide 95: If only this was dereferencing a nullptr!
	Slide 96: Expand scope
	Slide 97: Consider a simpler auxiliary problem
	Slide 98: Consider a simpler auxiliary problem
	Slide 99: Summation rows leaving out an element
	Slide 100: Signs of progress
	Slide 101: Summation rows leaving out an element
	Slide 102: Summation rows leaving out an element
	Slide 103: Summation rows leaving out an element
	Slide 104: Generalisation ?
	Slide 105: Summation rows leaving out an element
	Slide 106
	Slide 107: Summation rows leaving out an element
	Slide 108: Summation rows leaving out an element
	Slide 109: Summation rows leaving out an element
	Slide 110: Summation across all rows in matrix and write sum in LH column
	Slide 111: Summation across all rows in matrix and write sum in LH column
	Slide 112: Summation across all rows in matrix and write sum in LH column
	Slide 113: What are the costs for this solution?
	Slide 114: The New Algorithm : Summations over set
	Slide 115: Leave one out vector sums
	Slide 116: New Algorithm
	Slide 117: What would a vectorized SIMD version look like?
	Slide 118: Reflection
	Slide 119: Reflection
	Slide 120: Generalisation Reflection
	Slide 121: Reflection
	Slide 122: Technical
	Slide 123: Hardware Memory and Vectorisation
	Slide 124: VecXX Utility
	Slide 125: VecXX
	Slide 126: Create a vectorized version using DR3
	Slide 127: What would a vectorized SIMD version look like?
	Slide 128
	Slide 129: Leave One Out Regression- Performance Run
	Slide 130: How can we make these summations more accurate?
	Slide 131: Heuristics Mini: Work-Backwards
	Slide 132: Heuristics Mini: Work-Backwards
	Slide 133: Heuristics Mini: Work-Backwards
	Slide 134
	Slide 135: Lets Experiment
	Slide 136: Results Sums of the same set of numbers using Kahan and pairwise
	Slide 137: Results Sums of the same set of numbers using Kahan and pairwise
	Slide 138: Results Sums of the same set of numbers using Kahan and pairwise
	Slide 139
	Slide 140
	Slide 141
	Slide 142: Take Aways
	Slide 143: If you cannot solve the proposed problem
	Slide 144: Next Step Getting Started

